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Abstract. We study the influence of the on-site Hubbard repulsion U between the conduction electrons
on the stability of the fully polarized ferromagnetic state in the ferromagnetic Kondo lattice model. Using
single spin flip variational wave functions including local correlations in the vicinity of the flipped spin we
investigate in detail how each of the two distinct mechanisms Hubbard repulsion and double exchange leads
to ferromagnetism in this model, which is relevant for the Colossal Magnetoresistance (CMR) materials. In
the ferromagnetic region of the phase diagram variational bounds on the spin wave energies are obtained.
In particular the doping dependency of the deviations of the spin wave dispersion from a conventional
Heisenberg form is analyzed. The astonishingly good agreement of our variational results in one dimension
with results from numerical calculations on finite chains both for the stability region and the spin wave
dispersion suggests that our results for the square lattice and the simple cubic lattice give an even better
description of the actual properties of the model under consideration.

PACS. 75.30.Ds Spin waves – 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 75.10.Lp Band
and itinerant models

1 Introduction

The discovery of a huge magnetoresistance (Colossal Mag-
netoresistance CMR) in substances like R1−xXxMnO3

with R = La, Pr or Nd and X = Sr, Ca, Ba or Pb [1–5] has
motivated a large number both of theoretical and experi-
mental works dealing with this materials. More than forty
years ago Zener introduced the double exchange model
in order to explain the interplay between magnetic or-
der and conductivity in these manganite compounds with
perovskite structure [6–8]. The d-shell of the Mn3+ in the
undoped antiferromagnetic insulators contains three elec-
trons in the tightly bound t2g orbitals forming a core spin
of magnitude S = 3/2 which due to strong Hund’s rule
couples ferromagnetically to one additional electron in one
of the eg orbitals. For doping concentrations 0.2<∼x<∼ 0.5
the CMR materials are ferromagnetic metals because of
additional holes in the eg conduction bands. The ferro-
magnetic coupling between core spins and conduction elec-
trons favors ferromagnetic ordering, because the hopping
amplitudes of the conduction electrons reach the maxi-
mum possible values if the core spins are all aligned.

Some doubts have been raised whether the double ex-
change model alone can account for the large change of
resistivity in the CMR materials [9]. The coupling of the
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electrons to lattice degrees of freedom may play an impor-
tant role in understanding the physics of the CMR mate-
rials completely (see for example [10–13]). In this context
the importance of the degeneracy of the eg orbitals for the
double exchange model and for the interaction of electrons
and phonons has been discussed [14–16]. The physics of
the double exchange model is however far from trivial.
The Berry phase of the conduction electrons could lead to
strong localization in the paramagnetic phase [17,18].

In this paper we will assume that the eg-degeneracy is
lifted due to small deviations from cubic symmetry and
thus we will focus on a single band ferromagnetic Kondo
lattice model. For reasons of simplicity we will, neverthe-
less, later use a simple cubic lattice. We will study effects
of correlations between the conduction electrons taking
into account the Hubbard interaction U for the conduc-
tion electrons. Thus we can study the interplay between
two distinct mechanisms favoring ferromagnetism: double
exchange and Hubbard repulsion.

In the case of the Hubbard model with infinite on-site
repulsion U Nagaoka’s theorem proves the existence of a
fully polarized ferromagnetic ground state (Nagaoka state)
in the case of one additional electron in the half filled
band (and one additional hole for bipartite lattices) for a
large number of lattices, especially for the square lattice
and the simple cubic lattice [19,20]. Extensions of this
theorem to finite electron densities in the thermodynamic
limit have not yet been obtained. In the case of more than
one additional electron in a half filled band, but still a
vanishing electron density in the thermodynamic limit,
ground states with lower total spin have been obtained
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[21–24]. Nevertheless for non bipartite lattices the regions
of possible stability of the Nagaoka state at large Hubbard
repulsion close to half filling turn out to be very robust
with respect to single spin flips [25].

Here we will improve variational bounds for the possi-
ble stability of a ferromagnetic ground state for the simple
cubic lattice in the thermodynamic limit using variational
wave functions which we have employed successfully in
the case of the Hubbard model on the square lattice in a
previous publication [26].

We will then generalize these wave functions which in-
clude local correlations in the vicinity of the flipped spin as
well as the ansatz RES3 given in [25] to the ferromagnetic
Kondo lattice model with Hubbard repulsion. Although
the ferromagnetic Kondo coupling is supposed to be more
efficient in stabilizing a ferromagnetic ground state the
additional degrees of freedom of the core spins compli-
cate rigorous proofs of ferromagnetism. The ferromagnetic
Kondo lattice is known to exhibit ferromagnetism for one
electron for an arbitrary finite exchange coupling [27,28].
The ground state of a chain with open boundary condi-
tions and infinite Hund’s rule coupling was also shown to
be a fully polarized ferromagnet for all electron concen-
trations 0 6= n 6= 1 [27]. For the square lattice and the
simple cubic lattice however no rigorous results for finite
electron concentrations have yet been given.

We will therefore analyze the region of possible sta-
bility for the Nagaoka state for the simple cubic lattice
using our variational ansatz. Our results not only improve
previous variational bounds quantitatively. We have also
obtained a qualitative improvement of the results shown in
[29,30] by showing the instability of the Nagaoka state for
any finite Hund’s rule coupling close to half filling. This
result was obtained using a very simple scattering state
ansatz to describe the antiferromagnetic correlations in
this region.

In the ferromagnetic region of the phase diagram we
will give upper bounds on the energies of spin wave ex-
citations and on the bottom of the scattering continuum
assuming a fully polarized ground state. The measured
spin wave dispersion for La0.7Pb0.3MnO3 throughout the
whole Brillouin zone (BZ) is found in quite good agree-
ment with the simple magnon dispersion of a Heisenberg
model [31,32]. We will investigate closer the doping depen-
dence of deviations from the Heisenberg model dispersion,
which also follows from an expansion in 1/S in the Kondo
lattice model at JH = ∞ [33,34]. We will be able to re-
produce exact numerical results for spin wave energies for
finite chains with core spins of size S = 1/2 [35] very accu-
rately, so we can be confident that our variational results
for the large S = 3/2 spin in the simple cubic lattice are
very reliable.

Finally we will use our variational results for the exci-
tation energies at T = 0 to give a rough estimate of the
Curie temperature both for the pure Hubbard model and
for the ferromagnetic Kondo lattice model in the simple
cubic case.

2 Model and ansatz

The starting point for our investigation is the following
Hamiltonian

H = −
∑
〈x,y〉

tx,yc
+
yσcxσ + U

∑
x

nx↓nx↑

−JH
∑
x

Sx · sx +
JHS

2

∑
x

nx . (1)

The operators c+xσ (cxσ) create (annihilate) conduction
electrons at site x. The spin of the conduction electrons
is given as sx = 1

2

∑
σ,σ′ c

+
xσσσ,σ′cxσ′ while the core spin

at site x is denoted by Sx (σ are the Pauli matrices). nx
is the electron density of the conduction electrons at site
x. The usual tight binding approximation (only hopping
processes between nearest neighbor sites allowed in the
kinetic energy) leads to the band structure

εk = −2t
d∑
ν=1

cos(kν) (2)

with minimum εB = −zt and maximum εT = zt for a d-
dimensional hypercubic lattice with coordination number
z = 2d. In addition to the on-site Coulomb repulsion U
the electron spins interact with the core spins via a fer-
romagnetic Hund’s rule coupling JH > 0. The last term
simply ensures that the Hund’s rule energy is compen-
sated for sites with maximal total spin of conduction elec-
tron and core spin. We will only consider electron densities
0 ≤ n ≤ 1.

The fully polarized ferromagnetic state (Nagaoka
state)

|N〉 := |N〉c ⊗ |LS,LS〉core (L is the number of sites)

with

|N〉c :=
∏

k∈BZ
εk≤εF

c+k↑|0〉c . (3)

is an eigenstate of the Hamiltonian with vanishing Hund’s
rule and Coulomb energy and with the kinetic energy per
site given by

eN =

∫ εF

εB

dερ(ε)ε (4)

where the one electron density of states ρ is defined by

ρ(ε) := 〈δ(εk − εF )〉k∈BZ . (5)

In a previous publication we investigated the stability of
the Nagaoka state with respect to a single spin flip in
the Hubbard model on the square lattice [26]. This corre-
sponds to the limit of vanishing core spin of the Hamil-
tonian (1). The local ansatz for the scattering states and
spin waves used in [26] can be easily generalized to the fer-
romagnetic Kondo lattice model by including additional
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variational parameters for a reduced z-component of a
core spin at one lattice site. The resulting scattering state
is of the general form

|SLOC〉 : =
1
√
L

∑
x

eiqx
∑
ν

{
ψνc c

+
x↓A

ν
x

+ψνsS
−
x B

ν
x

}
ckF ↑|N〉 (6)

with a finite number of variational parameters ψνc and ψνs .
In view of the translational invariance of the Hamiltonian
we choose the local operators Bν and Aν as

Aνx := T−1

x Aν0 Tx and Bνx := T−1

x Bν0 Tx (7)

with the translation operator Tx. They describe correla-
tions in the vicinity of the flipped spin

Aν0 ∈
{

1, cy1,1↑
c+y1,2↑

, cy2,1↑
cy2,2↑

c+y2,3↑
c+y2,4↑

,

cy3,1↑
cy3,2↑

cy3,3↑
c+y3,4↑

c+y3,5↑
c+y3,6↑

| |yi,j |∞ < 5
}

and

Bν0 ∈
{
c+y1,1↑

, cy2,1↑
c+y2,2↑

c+y2,3↑
,

cy3,1↑
cy3,2↑

c+y3,3↑
c+y3,4↑

c+y3,5↑
| |yi,j |∞ < 5

}
.

(8)

The operatorsAν0 create between 0 and 3 localized particle
hole pairs in the spin up Fermi sea, Bν0 create a particle
in addition to up to 2 particle hole pairs. The Manhattan
distance |yi,j |∞ of the particles and holes from the flipped
spin will be assumed smaller than 5. It is always the best
choice to create the spin-↓ electron at the bottom of the
band q = 0 so that the ansatz can be simplified by choos-
ing variational parameters reflecting the symmetry of the
hypercubic lattice.

Let us briefly look at some simple choices of operators
A0 which have been investigated before in the case of the
Hubbard model. The most simple ansatz of this form is
the Gutzwiller projected single spin flip scattering state
[36]. This ansatz corresponds to the choice of only two op-
erators A0 = 1 and A0 = c0↑c

+
0↑ and is sufficient to obtain

a critical hole density δcr = 0.49 at infinite Coulomb re-
pulsion U . For all larger hole densities the Nagaoka state is
unstable with respect to a single spin flip. In the following
we will call this ansatz GUTZ.

The easiest way to improve GUTZ at infinite U is to
allow the spin-↑ electron to avoid the flipped spin rather
than just to project out double occupancies [37–39]. If
one confines the hopping of the spin-↑ electron to nearest
neighbor sites of the flipped spin this ansatz, which will be
called BE in this paper, corresponds to the choice of addi-
tional operatorsA0 = c0↑c

+
ν↑ where ν is a nearest neighbor

site of 0. These and all the other wave functions studied in
[40,26] can easily be generalized to the case of finite core
spins and ferromagnetic Hund’s rule coupling. For each
operator A0 without double occupancy the corresponding
operator B0 is obtained by leaving out the first annihila-
tion operator at site 0. In the extreme case of infinite JH

the total spin of conduction electron and core spin at each
lattice site has to be S+1/2. In this case the operators B0

and A0 have to be combined properly to give Stot,−. For
the ansatz GUTZ for example the only variational wave
function with finite energy in this limit is obtained by the
combination Stot,−0 c+0↑ = S−0 c

+
0↑ + c+0↓c0↑c

+
0↑.

At finite Coulomb repulsion additional operators con-
taining double occupancies become important. Close to
half filling both in the Hubbard model and in the ferro-
magnetic Kondo lattice model ferromagnetism is unstable
against a phase separation between a ferromagnetic phase
containing all the holes and an antiferromagnetic half filled
phase [41–44]. In order to describe the antiferromagnetic
correlations close to half filling properly it is not sufficient
to consider just the Gutzwiller projected ansatz GUTZ
or any other of the states discussed above. In contrast to
statements in [45] one can however show the instability
of the Nagaoka state close to half filling with a very sim-
ple variational scattering state constructed from the two
states

|0〉 :=
1
√
Lz

∑
x

eiqx
∑
〈ν,0〉

c+x↓cx+ν↑c
+
x↑ckF ↑

|N〉 (9)

|1〉 :=
1√

(2S + 1)Lδ

×
∑
x

eiqx
(
S−x + c+x↓cx↑

)
c+x↑ckF ↑

|N〉. (10)

This corresponds to the choice of operators A0 = c0↑c
+
0↑,

B0 = c+0↑ and A0 = cν↑c
+
0↑. With this ansatz the anti-

ferromagnetic exchange interaction is taken into account.
We define the energy cost of a double occupancy as
U ′ := JHS + U and the coupling U ′cr(δ) by the condi-
tion that the Nagaoka state is unstable at a given hole
density δ for all U ′ < U ′cr(δ). By calculating the energy of
the two states given in equations (9) and (10) and taking
the limit δ → 0 one obtains a divergence of the critical
coupling U ′cr(δ) for δ → 0 as

U ′cr(δ) ∼
8zt2ρ(εT )

(2S + 1)δ
(11)

for the square lattice and

U ′cr(δ) ∝ δ
−2/3 (12)

for the simple cubic lattice. In this way we easily under-
stand and prove the instability of the Nagaoka state close
to half filling for any finite JH and for any finite U .

In order to obtain quantitatively improved results we
applied the method described in [26] to the Hubbard
model on the simple cubic lattice and to the ferromag-
netic Kondo lattice with Hubbard repulsion between the
conduction electrons for the simple cubic lattice and for
the square lattice. We used a C++-program to create and
to test a large number of local operators A0 and B0 in
order to be able to include the most efficient operators in
our final ansatz. For one dimensional chains the results
obtained using our variational ansatz can be compared
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with results from exact calculations for finite chains for
U = 0 and S = 1/2 and S = 3/2. Even for S = 1/2 our
variational bounds are in good agreement with the nu-
merical results from [43,44] (for example at δ = 0.4 the
deviation is 19%). This gives rise to the expectation that
our approach gives an even better approximation for the
phase diagram for the simple cubic lattice and for larger
spin since correlations get more localized the higher the
dimension and since the RPA gets exact for S =∞.

The generalization of the calculation for the ferromag-
netic Kondo lattice model is straightforward. Particularly
helpful is the fact that states containing a core spin with
a reduced value of Sz are orthogonal to states containing
a spin-↓ electron. Therefore, we will not repeat the details
of the calculation given in [26] here.

In [25] an ansatz RES3 was introduced which contains
an infinite number of variational parameters. The gener-
alization of this ansatz to the case of the ferromagnetic
Kondo lattice model has the form

|RES4〉 :=
1
√
L

∑
x,k

ψc,1k ei(q+k)xc+x↓cx↑c
+
k↑ckF ↑

|N〉

+
1
√
L

∑
x,k

ψc,2k ei(q−k)xc+x↓c
+
x↑ck↑ckF ↑

|N〉

+
1
√
L

∑
x,k

ψske
i(q+k)x

(
S−x + c+x↓cx↑

)
c+k↑ckF ↑

|N〉.

(13)

The variational equation and the corresponding system
of linear equations obtained by integration are given in
Appendix. This ansatz describes correlations at an arbi-
trary distance of the spin flip. Local correlations in the
vicinity of the spin-↓ electron are however described not
as well as in the ansatz SLOC because only one particle
hole pair cx↑c

+
k↑ or c+x↑ck↑ is included. The scattering state

studied in [29] is contained in the ansatz (13) by choosing

ψc,1k ≡ ψc,2k ≡ 1/
√
L. We will call this ansatz OKA in the

following.
In the same way as the scattering states the local spin

wave ansatz studied in [26] can be generalized for the fer-
romagnetic Kondo lattice model giving

|SWLO〉 =
1
√
L

∑
x

eiqx
∑
ν

{
ψνc c

+
x↓C

ν
x + ψνsS

−
x A

ν
x

}
|N〉

(14)

with operators C obeying

Cνx := T−1

x Cν0 Tx (15)

and

Cν0 ∈
{
cy1,1↑

, cy2,1↑
cy2,2↑

c+y2,3↑
,

cy3,1↑
cy3,2↑

cy3,3↑
c+y3,4↑

c+y3,5↑
| |yi,j |∞ < 5

}
. (16)

This ansatz can be evaluated in exactly the same man-
ner as the ansatz (6). We will denote by SWGU the ansatz

containing all operators C0 of the form cy↑ and cy↑cy′↑c
+
0↑

with |y|∞ ≤ 1, |y′|∞ ≤ 1 and the corresponding opera-
tors A0 which approximate the spin wave corresponding
to GUTZ. The ansatz containing C0 operators of the type
cy↑ and cy↑cy′↑c

+
ν↑ with |y|∞ ≤ 1, |y′|∞ ≤ 1 for near-

est neighbor sites ν of 0 and the corresponding operators
A0 we name SWBE. In the thermodynamic limit all the
variational spin wave wave functions only contain terms
with Stot = S − 1 for q 6= 0. Therefore the spin wave
energies calculated this way are variational upper bounds
for the spin wave excitations assuming a fully saturated
ferromagnetic ground state.

3 Results

In Figure 1 we show regions of guaranteed instability for
the Nagaoka state for the simple cubic lattice for the
Hamiltonian from equation (1) with two sets of param-
eters. Figure 1a shows the situation in the case of the
pure Hubbard model (S = 0), Figure 1b corresponds to
the choice S = 3/2 and JH = 0.5zt. In both cases we
show the reduced coupling Ured := U

U+UBR
with the criti-

cal coupling UBR = 16|e0
N | ≈ 16.04t from [46] used as the

reference energy. Only the areas above all lines are left for
a Nagaoka ground state. We show the result from varia-
tional calculations using the four different single spin flip
wave functions OKA (from [29]), GUTZ, RES4 and SLOC,
which we discussed in the previous section (cf. Eqs. (13)
and (6)). The ansatz SLOC used in this case contains 241
local operators in the case of the Hubbard model and 125
operators in the ferromagnetic Kondo lattice case.

In both figures it is obvious that the new wave func-
tions RES4 and SLOC considerably improve the results
obtained with the variational wave functions GUTZ and
OKA. For the Hubbard model the critical hole density
at U = ∞ is reduced from the best previous value of
δcr = 0.237 (obtained with the ansatz RES3 [25,47]) to
δcr = 0.185. The critical coupling Ucr := min

δ
Ucr(δ) is en-

hanced from Ucr = 48.9t to Ucr = 78.6t. As expected the
wave functions RES4 and SLOC correctly show the diver-
gence of the coupling Ucr(δ) for vanishing hole density in
contrast to the wave functions OKA and GUTZ.

Figure 1a tells us that in the pure Hubbard model the
Nagaoka state is a possible ground state only for large
Coulomb repulsion and small hole density. This situation
is very different in the case of the ferromagnetic Kondo lat-
tice. Our variational calculations confirm the scenario sug-
gested by the rigorous results concerning ferromagnetism
[27,28] in the thermodynamic limit for the simple cubic
lattice: We do not find any instability with respect to sin-
gle spin flip at infinite Hund’s rule coupling and for ar-
bitrary small values of JH we find a region of possible
stability for low particle density (δ → 1) [48].

Figure 1b shows the effect of switching on Hund’s rule
coupling to core spins of size S = 3/2. There is a sta-
bility region for low electron density even at vanishing
Coulomb repulsion (Ured = 0). The stability region close
to half filling is substantially enlarged and includes regions
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Fig. 1. Instability of the Nagaoka state for (a) the Hubbard model and (b) the ferromagnetic Kondo lattice with JH = 0.5zt
and S = 3/2 for the simple cubic lattice.
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Fig. 2. Spin wave dispersion for the JH =∞ Kondo lattice model for (a) chains with S = 1/2 and (b) the simple cubic lattice
with S = 3/2. The symbols in (a) show the exact results from [35].

with higher hole densities and lower Hubbard repulsion.
Our new wave functions RES4 and SLOC give again the
strongest restrictions for the region of possible stability of
the Nagaoka state. The ansatz RES4 gives better results
at small particle density while the ansatz SLOC including
further local correlations is more efficient in the region of
small and intermediate hole density. If the Hund’s rule
coupling is further increased the two separated regions of
possible stability of the Nagaoka state shown in Figure 1b
merge to give one growing stability region. At large but
finite JH only a window of very small hole density close
to half filling shows instability of the Nagaoka state with
respect to a single spin flip [48].

In the following we will focus on the excitation spec-
trum in the region of possible stability of the Nagaoka
state. A simple Random-Phase-Approximation (RPA) for
the spin wave energies at JH = ∞ gives a dispersion
which has exactly the same form as the magnon disper-
sion in a Heisenberg ferromagnet [33,34]. Figure 2 shows

the deviation of the actual spin wave dispersion approx-
imated by our variational ansatz from this form in the
one-dimensional case with S = 1/2 (a) and for the sim-
ple cubic lattice with S = 3/2 (b). Both figures show the
spin wave dispersion normalized such that the stiffness D
defined by ω(q) ∼ Dq2 for q → 0 coincides for all curves.
For the chains we compare our results with those obtained
by exact diagonalization for finite chains [35]. The figures
also include the spectral weight

P :=
|〈N |Stot,+q |ψ(q)〉|2

〈N |Stot,+q Stot,−q |N〉
(17)

which is proportional to the weight of a spin wave peak
in a measurement of the susceptibility in a neutron scat-
tering experiment. Figure 2a shows that our variational
ansatz gives a good description of the spin wave excita-
tion even in the extreme quantum case of one dimension
and low spin where quantum fluctuations are expected
to be most pronounced. The results shown in Figure 2b
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should therefore be even closer to the actual excitations in
the ferromagnetic Kondo lattice model. It is obvious that
the deviation of the spin wave dispersion from a simple
Heisenberg form is large for low electron concentration (δ
close to 1) in the thermodynamic limit for the simple cubic
lattice.

In order to demonstrate the doping dependence of this
deviation Figure 3 shows the quantity

∆ :=
2zD

ω(Q)
− 1 (18)

for the simple cubic lattice with JH = ∞ (Qi = π for
i=1, ..., d). ∆ is exactly zero for a Heisenberg dispersion.
The deviation is large for large hole density, but there is
also a finite deviation at smaller hole density. The corre-
sponding analysis for one-dimensional systems is again in

good agreement with results from numerical calculations
for finite chains [49].

Figure 4 shows the spin wave dispersion at δ = 0.3 and
δ = 0.95 obtained by the wave functions SWBE, SWGU
and RPA for values of JH = zt and U = 10zt which are
reasonable for the CMR materials. The reduction relative
to the RPA value of the spin wave energy due to correla-
tion effects is stronger for the small particle density. For
δ = 0.95 the additional correlations in the ansatz SWBE
compared to the ansatz SWGU also become more impor-
tant. The correlation effect is however not negligible even
for the low hole density δ = 0.3. The largest deviation
of the energy of the ansatz SWBE from the RPA value in
this case is approximately 35%. Since the deviations of the
spin wave dispersion from a Heisenberg dispersion are rel-
atively small, it is not surprising, that the measured spin
wave dispersion for La0.7Pb0.3MnO3 shown in [31,32] ap-
peared close to the spin wave dispersion for a Heisenberg
model.

Finally we want to give a rough estimate for the Curie
temperature extrapolated from our variational bounds for
the spin excitations at zero temperature. For the ferro-
magnetic Kondo lattice with JH =∞ we use the approx-
imation

kBTCurie = J(2.90S′(S′ + 1)− 0.36) (19)

for the critical temperature for a Heisenberg model with
spin S′ [50]. We choose a value of S′ = S + n 1

2 for the
effective spin and a coupling constant J which repro-
duces the spin wave stiffness D of the variational wave
function. The resulting critical temperatures for the RPA
spin wave and the spin wave SWLO are shown in Figure
5a. Even the RPA spin wave gives reasonable values for
the critical temperature. Using the ansatz SWLO we get
TCurie = 0.122t ≈ 280 K for δ = 0.3 for a realistic hop-
ping amplitude t = 0.2 eV. The critical temperature of
La2/3Ca1/3MnO3 for example is TCurie = 250 K [51].

In the case of the Hubbard model the spin wave ex-
citations are not well separated from the bottom of the
scattering continuum. Here we assume the magnons to be
independent bosons. Since the low lying excitations close
to q = 0 are most important we approximate the spin
wave dispersion by ω(q) = Dq2. For hole densities close to
the critical hole density the scattering continuum becomes
also important. Thus we show in Figure 5b an estimate for
the critical temperature which also takes into account the
bottom of the scattering continuum εscat by choosing

ω(q) =

{
Dq2 if Dq2 < εscat
εscat else.

(20)

In the case of the Hubbard model the effect of additional
correlations is again more pronounced. The reduction of
the critical temperature in comparison to an estimate
using the RPA spin wave is much stronger than in the
S = 3/2, JH =∞ case [48].
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Fig. 5. Critical temperature for (a) the ferromagnetic Kondo lattice model with JH = ∞ and S = 3/2 and (b) the Hubbard
model at U =∞ for the simple cubic lattice.

4 Summary and discussion

We investigated the stability of the fully polarized ferro-
magnetic state with respect to a single spin flip for the
ferromagnetic Kondo lattice model including Hubbard re-
pulsion for the conduction electrons. We used variational
wave functions describing scattering states to obtain exact
bounds for the region of possible stability of this Nagaoka
state in the thermodynamic limit for the simple cubic lat-
tice. As a special case the pure Hubbard model with S = 0
was re-investigated. We improved previous variational re-
sults for various values of core spin, Hund’s rule coupling
JH and Hubbard repulsion U . For example the critical hole
density for the pure Hubbard model was reduced from
δcr = 0.237 [25,47] to δcr = 0.185 and the critical cou-
pling was increased from Ucr = 48.9t to Ucr = 78.6t. In
addition to the quantitative improvements which require
a large number of variational parameters we showed the
instability of the Nagaoka state for any finite coupling JH
and U close to the half filled lattice including the exchange
energy in the variational ansatz for a scattering state.

In the one dimensional ferromagnetic Kondo lattice
model without Hubbard repulsion both for core spins of
magnitude S = 3/2 and S = 1/2 our variational ansatz
gives boundaries for the ferromagnetic regime in the ther-
modynamic limit which are very close to numerical results
for finite chains [43,44]. Thus we expect that our results
for the simple cubic lattice and S = 3/2 give a good de-
scription of the actual stability region in this case, where
quantum fluctuations are expected to be more local. One
advantage of the variational approach is the fact that it is
possible to include a large Coulomb repulsion in the fer-
romagnetic Kondo lattice model without further approxi-
mations such as classical core spins or infinite JH . In this
sense the present work complements extensive numerical
calculations for finite chains with U = 0 [43,44].

In regions of a possible ferromagnetic ground state we
have calculated variational approximations for the spin
wave energies assuming fully polarized ferromagnetism in
the ground state. Especially we have calculated the doping
dependence of the deviation of the spin wave dispersion
from the one obtained for a Heisenberg ferromagnet. We

found that the deviation is large for large hole densities
but relatively small in the vicinity of the hole density δ =
0.3 for which the spin wave dispersion has been measured
throughout the Brillouin zone [31,32]. We obtained good
agreement between our variational results and calculations
for finite chains and a core spin of S = 1/2. This result
for the extreme quantum case once more suggests that our
method gives an even better approximation for the actual
spin wave dispersion of the Kondo lattice for the higher
spin S = 3/2 and the simple cubic lattice relevant for the
CMR materials.

We estimated the Curie temperature using our vari-
ational bounds for the excitation energies at T = 0 and
obtained values that are reasonable for the CMR mate-
rials in agreement with calculations using various other
methods [52,44,53].

Appendix: Variational equation ansatz RES4

Using the definitions

ψc,1k := 0 if εk < εF ,

ψsk := 0 if εk < εF , (21)

ψc,2k := 0 if εk > εF

and

Ic1 :=
1

(2π)d

∫
ddkψc,1k , Ic1ε :=

1

(2π)d

∫
ddkεkψ

c,1
k ,

Ic2 :=
1

(2π)d

∫
ddkψc,2k , Ic2ε :=

1

(2π)d

∫
ddkεkψ

c,2
k ,

(22)

Is :=
1

(2π)d

∫
ddkψsk , Isε1 :=

1

(2π)d

∫
ddkεkψ

s
k
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variation for q = 0 leads to the equations

0 = ψc,1k

[
nω − |eN | − JSn− εk

(
n+
|eN |

zt

)]
+ ψsk

[
nω − |eN | − εk

(
n+
|eN |

zt

)]
+ Is(ω − εB)

− Ic2ε
(

1+
εk

zt

)
+Ic2(εk − εB)+Ic1 (ω − εB − JS) ,

(23)

0 = ψc,2k

[
δω − |eN | − JSδ − Uδ + εk

(
δ +
|eN |

zt

)]
+ Ic2(ω − εB − JS − U)

+ Ic1ε

(
1−

εk

zt

)
− Ic1(εk + εB)

+ Isε1

(
1−

εk

zt

)
− Is(εk + εB), (24)

0 = ψsk

[
(2S + n)ω − |eN | − εk

(
2S + n+

|eN |

zt

)]
+ ψc,1k

[
nω − |eN | − εk

(
n+
|eN |

zt

)]
+ Is(ω − εB)

− Ic2ε
(

1 +
εk

zt

)
+ Ic2(εk − εB) + Ic1(ω − εB). (25)

By integration over k we obtain a system of linear equa-
tions in the variables I.

First of all the variable Isε can be eliminated by sub-
tracting equation (24) from (23) to obtain

(ω − εk)ψsk = −
J

2
(nψc,1k + Ic1) (26)

and expressing Isε by Is and Ic1:

Isε1 = ωIs +
J

2
Ic1. (27)

We solve equation (23) for ψc,1 and equation (24) for ψc,2

and obtain two linear equations by integration and two
linear equations by multiplication by εk followed by inte-
gration. The fifth equation is calculated by direct integra-
tion of equation (23) leading to

M · (Ic1, Is, Ic2, Ic2ε, Ic1ε)
T = 0 (28)

with

M1,1 =

∫ εT

εF

dερ(ε)
1

N1(ε, ω)

{
(ω − εB − JS)(ω − ε)

−
J

2

[
nω − |eN | − ε

(
n+
|eN |

zt

)]}
,

M1,2 =

∫ εT

εF

dερ(ε)
1

N1(ε, ω)
(ω − ε),

M1,3 =

∫ εT

εF

dερ(ε)
1

N1(ε, ω)
(ε− εB)(ω − ε),

M1,4 =

∫ εT

εF

dερ(ε)
1

N1(ε, ω)
(ε− ω)

(
1 +

ε

zt

)
,

M1,5 = 0, (29)

M2,1 =

∫ εT

εF

dερ(ε)
ε

N1(ε, ω)

{
(ω − εB − JS)(ω − ε)

−
J

2

[
nω − |eN | − ε

(
n+
|eN |

zt

)]}
,

M2,2 =

∫ εT

εF

dερ(ε)
ε

N1(ε, ω)
(ω − ε),

M2,3 =

∫ εT

εF

dερ(ε)
ε

N1(ε, ω)
(ε− εB)(ω − ε),

M2,4 =

∫ εT

εF

dερ(ε)
ε

N1(ε, ω)
(ε− ω)

(
1 +

ε

zt

)
,

M2,5 = 0, (30)

M3,1 =

∫ εT

εF

dερ(ε)
1

N2(ε, ω)

[
J

2

(
1−

ε

zt

)
− (ε+ εB)

]
,

M3,2 =

∫ εT

εF

dερ(ε)
1

N2(ε, ω)

(
1−

ε

zt

)
,

M3,3 =

∫ εT

εF

dερ(ε)
1

N2(ε, ω)
(ω − εB − JS − U),

M3,4 = 0,

M3,5 =

∫ εT

εF

dερ(ε)
1

N2(ε, ω)

(
1−

ε

zt

)
, (31)

M4,1 =

∫ εT

εF

dερ(ε)
ε

N2(ε, ω)

[
J

2

(
1−

ε

zt

)
− (ε+ εB)

]
,

M4,2 =

∫ εT

εF

dερ(ε)
ε

N2(ε, ω)

(
1−

ε

zt

)
,

M4,3 =

∫ εT

εF

dερ(ε)
ε

N2(ε, ω)
(ω − εB − JS − U),

M4,4 = 0,

M4,5 =

∫ εT

εF

dερ(ε)
ε

N2(ε, ω)

(
1−

ε

zt

)
(32)

M5,1 = ω − |eN | − JS − δεB −
J

2

(
n+
|eN |

zt

)
,

M5,2 =

(
δ −
|eN |

zt

)
,

M5,3 = |eN | − δεB,

M5,4 = −δ −
|eN |

zt
,

M5,5 = −n−
|eN |

zt
(33)

where

f1(ε, ω) := nω − |eN | − ε

(
n+
|eN |

zt

)
,

f2(ε, ω) := δω − |eN |+ ε

(
δ +
|eN |

zt

)
,

N1(ε, ω) := (JSn− f1(ε, ω))(ω − ε) +
Jn

2
f1(ε, ω) and

N2(ε, ω) := δ(JS + U)− f2(ε, ω).
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All quantities can be evaluated by just one-dimensional
integrations. The density of states ρ is calculated using a
polynomial fit taking into account the van Hove singular-
ities. At the lowest variational energy ω the matrix M is
singular. Thus ω corresponds to the root of det(M) and
is calculated numerically.
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